

The sPHENIX Experiment

Anthony D Frawley Florida State University

For the sPHENIX Collaboration

RHIC/AGS User's Meeting June 12-15, 2018

RHIC and LHC Measurements are Complementary

Initial conditions and QGP evolution at RHIC and LHC are different!

Use combined data to extract T dependence

The QGP spends more time near T_c at RHIC energy

A. Ramamurti, E. Shuryak, Phys. Rev. D 97, 016010 (2018)

M. Habich, J. Nagle, and P. Romatschke, EPJC, 75:15 (2015)

The structure of the QGP is expected to depend on temperature

Complementary Kinematic Reach

Overlaps → same probe, different QGP evolution ^{5P}

The sPHENIX Physics Program

The sPHENIX physics program has three major legs

Heavy flavor

with the goal of studying these in p+p, p+Au and Au+Au collisions

The Tracking detectors

Functions:

TPC - momentum measurement

MVTX - precise track vertex

INTT - timing & pattern recognition

The Tracking detectors

TPC - Gateless, continuous readout

- 90:10 Ne-CF4 gas low diffusion + high ion mobility
- Electron drift velocity 8 cm/μs 13.2 μs maximum drift time
- Quad GEM electron multiplier + chevron readout pads
- 40 layer readout covering 30 78 cm radius
- R-φ resolution ~ 150 μm
- Δp/p ~ 1% at 5 GeV/c

INTT - Silicon strips with 80 µm pitch

- 4 layers 6 < R < 12 cm
- Pitch 78 μm
- Fast can resolve one beam crossing

MVTX - 30 µm pitch MAPS pixels

- 3 layers 2.3 < R < 3.9 cm
- ~ 5 μm space point precision each

The Tracking detectors

TPC - Gateless, continuous readout

- 90:10 Ne-CF4 gas low diffusion + high ion mobility
- Electron drift velocity 8 cm/μs 13.2 μs maximum drift time
- Quad GEM electron multiplier + chevron readout pads
- 40 layer readout covering 30 78 cm radius
- R-φ resolution ~ 150 μm
- Δp/p ~ 1% at 5 GeV/c

INTT - Silicon strips with 80 µm pitch

- 4 layers 6 < R < 12 cm
- Pitch 78 μm
- Fast can resolve one beam crossing

MVTX - 30 µm pitch MAPS pixels

- 3 layers 2.3 < R < 3.9 cm
- ~ 5 μm space point precision each

Integration windows / events:					
	Window	Au+Au	p+p		
	μs	200 kHz	13 MHz		
TPC	± 13.2	5	343		
MVTX	± 5	2	130		
INTT	02 +.08	1	1.3		

This event "pileup" is properly included in all simulations

The INTT's main function is to resolve ambiguities due to pileup

Tracking Performance

Simulated performance for

- Low occupancy events (100 pions)
- 0-4 fm Hijing Au+Au + 200 kHz event rate
 - (0-7% central, 100 pions embedded)

Have not yet implemented clustering designed to handle overlaps

Tracking Performance

Simulated performance for

- Low occupancy events (100 pions)
- 0-4 fm Hijing Au+Au + 200 kHz event rate
 - (0-7% central, 100 pions embedded)

Have not yet implemented clustering designed to handle overlaps

Calorimeters

EMCal

Tungsten-scintillating fiber sampling calorimeter $18\ X_0$, $1\ \lambda$

 $\Delta \eta \times \Delta \varphi = 0.025 \times 0.025$

Read out by silicon photomultipliers 2D projective geometry Small Moliere Radius, short radiation length Energy resolution ≤ 16%/√E @ 5%

HCal

Sampling calorimeter Magnet steel plates / scintillator tiles $3.8 \ \lambda$

 $\Delta \eta \times \Delta \varphi = 0.1 \times 0.1$

Read out by silicon photomultipliers

Doubles as the flux return for the solenoid

Jet Physics Motivation

Broad goal

 understand coupling of the medium, origin of the coupling, and mechanism of rapid equilibration

sPHENIX will provide strong complementarity with the jet program at LHC:

Smaller underlying event activity

- Jets can be reconstructed to lower p_T
 - Probes longer distance scales
 - Smaller virtuality

Jets evolve in a QGP that is closer to T_C at RHIC

More sensitivity to 1-2 T_C

Different admixture of quark and gluon jets at RHIC

Jet Measurements

Di-jet asymmetry

Sensitive to jet quenching in QGP

Photon-jet correlations

- How much energy is lost from the jet cone?
- Photon provides good access to parent parton of associated jet

Jet fragmentation functions

How is the parton shower modified in the medium?

Photon Reconstruction Performance

Full GEANT 4 simulation of photons in 2D projective EMCal

E_{reco} vs Et_{rue} for single photons vs photons embedded in b= 0-4 fm Au+Au events

Energy resolution for photons in Hijing events

Constrained by beam test measurements

Jet Reconstruction Performance

Full GEANT 4 simulation of jets embedded in central Hijing events

Test of underlying event estimations and background subtraction

Jet p_T resolution in b= 0-4 fm Au+Au events for different cone sizes

Anti-kT algorithm with FastJet package

Truth level and reconstructed photon-jet p_T ratio

Heavy Flavor Physics Motivation

Heavy quarks are sensitive to different energy loss mechanisms

Also sensitive to momentum

We want to measure bottom from low to high momentum

- Precise measurement of track origin
- High luminosity

Tagging b - Jets

Two methods provide complementarity and cross checks

Large DCA:

Count tracks with DCA outside a cut relative to the event vertex

Heavy Flavor Measurements

Measure B hadrons through displaced vertex secondaries, or through complete reconstruction.

Hadron	Abundance	c τ (μm)	
D_0	61%	123	
D+	24%	312	
D_s	8%	150	
Λ_{c}	6%	60	
B ⁺	40%	491	
B ⁰	40%	455	
B_s	10%	453	
Λ_{b}	10%	435	

Hadron	Decay Channel	B.R.	
	D^0 + anything	$(59.5 \pm 2.9) \%$	
b-hadron admixture	J/ψ + anything	$(1.16 \pm 0.10) \%$	
	e^- + anything	$(10.86 \pm 0.35) \%$	
p +	$\overline{D}^0 + \pi^+$	(0.480 ± 0.015) %	
	$J/\psi + K^+$	(0.103 ± 0.003) %	

Heavy flavor Measurements

Non-prompt D⁰

B⁺ reconstruction

Performance for heavy flavor

Full GEANT 4 simulation of HF decays embedded in central Hijing events

(**left**) Precision of R_{CP} for non-prompt and prompt D⁰ (**right**) Precision of R_{AA} for b-jets

(**left**) Precision of v₂ for non-prompt and prompt D⁰ (**right**) for reconstructed b-jets

Upsilon Physics Motivation

Three states with very different binding energy and radii

- All with experimentally observable dilepton decay yields
- Different sensitivity to QGP conditions

Complementary to LHC:

- Samples QGP in different temperature region
- Underlying b+b yield is very different
 - ~ 0.05 / Au+Au event at RHIC
 - ~ 5 / Pb+Pb event at LHC
- Minimal coalescence at hadronization at RHIC

Upsilon Measurements

Simulated mass spectrum in p+p collisions (left).

CMS data for p+p, Pb+Pb (right).

Simulated mass spectrum in 0-10% central Au+Au collisions.

 Suppression taken from Strickland & Bazow.

Multi-year sPHENIX run plan

Year	Species	Energy [GeV]	Phys. Wks	Rec. Lum.	Samp. Lum.	Samp. Lum. All-Z
Year-1	Au+Au	200	16.0	$7~{ m nb^{-1}}$	$8.7 \; { m nb^{-1}}$	$34~\mathrm{nb^{-1}}$
Year-2	p+p	200	11.5	_	$48~{ m pb}^{-1}$	$267 \; { m pb}^{-1}$
Year-2	p+Au	200	11.5	_	$0.33 \; \mathrm{pb^{-1}}$	$1.46 \; \mathrm{pb^{-1}}$
Year-3	Au+Au	200	23.5	$14~\mathrm{nb^{-1}}$	$26~\mathrm{nb^{-1}}$	$88 \; { m nb^{-1}}$
Year-4	p+p	200	23.5	_	$149~{ m pb}^{-1}$	$783~\mathrm{pb^{-1}}$
Year-5	Au+Au	200	23.5	$14~\mathrm{nb^{-1}}$	$48 \; { m nb}^{-1}$	$92~\mathrm{nb^{-1}}$

- Guidance from ALD to think in terms of a multi-year run plan
- Consistent with language in DOE CD-0 "mission need" document
- Based on BNL C-AD guidance on projected luminosity
- Incorporates commissioning time in first year
- Structured so that first three years delivers at least minimum science program

Minimum bias Au+Au at 15 kHz for |z| < 10 cm:

47 billion (Year-1) + 96 billion (Year-2) + 96 billion (Year-3) = Total 239 billion events

For topics with Level-1 selective trigger (e.g. high p_T photons), one can sample within |z| < 10 cm a total of 550 billion events. One could sample events over a wider z-vertex for calorimeter only measurements, 1.5 trillion events.

Multi-year sPHENIX run plan

	Year	Species	Energy [GeV]	Phys. Wks	Rec. Lum.	Samp. Lum.	Samp. Lum. All-Z
	Year-1	Au+Au	200	16.0	$7~{ m nb^{-1}}$	$8.7 \; { m nb^{-1}}$	$34~\mathrm{nb^{-1}}$
	Year-2	p+p	200	11.5	_	$48~{ m pb}^{-1}$	$267~\mathrm{pb^{-1}}$
	Year-2	p+Au	200	11.5	_	$0.33 \; \mathrm{pb^{-1}}$	$1.46~{ m pb^{-1}}$
\rightarrow	Year-3	Au+Au	200	23.5	$14~\mathrm{nb^{-1}}$	$26~\mathrm{nb^{-1}}$	$88~\mathrm{nb^{-1}}$
	Year-4	p+p	200	23.5	_	$149~{ m pb}^{-1}$	$783 \; { m pb}^{-1}$
-	Year-5	Au+Au	200	23.5	$14 \; { m nb^{-1}}$	$48 \; {\rm nb^{-1}}$	$92 \; { m nb}^{-1}$

- Guidance from ALD to think in terms of a multi-year run plan
- Consistent with language in DOE CD-0 "mission need" document
- Based on BNL C-AD guidance on projected luminosity
- Incorporates commissioning time in first year
- Structured so that first three years delivers at least minimum science program

Minimum bias Au+Au at 15 kHz for |z| < 10 cm:

47 billion (Year-1) + 96 billion (Year-3) + 96 billion (Year-5) = Total 239 billion events

For topics with Level-1 selective trigger (e.g. high p_T photons), one can sample within |z| < 10 cm a total of 550 billion events. One could sample events over a wider z-vertex for calorimeter only measurements, 1.5 trillion events.

Marching toward reality

mechanical prototype of oHCal sector

6.5m

TPC field cage at SBU

- Magnet successfully tested to full current
- Contract awarded for full order of oHCal steel
- Full chain tests of calorimeter stack, MVTX telescope, INTT telescope, readout electronics
- TPC prototype to see test beam next week

R&D well underway for all detectors

MVTX & INTT test beam at FNAL

- February, March 2018

INTT telescope

TPC chevron pad plane

MVTX 4 sensor telescope + full readout chain

R&D well underway for all detectors

Block production begins this month for a pre-production EMCal sector

Set up for Calorimeters beam test at FNAL Feb-March 2018

Setup to be used for HCal tile testing during production

From Christine Aidala's PAC presentation on June 7

Conclusions and outlook

- An EIC detector based on sPHENIX can address the full physics program of the facility, spanning inclusive, semi-inclusive, and exclusive measurements.
- Efforts have ramped up investigating realistic possible implementations—lots of technical progress since 2014 LOI.
- Delivery of LOI in September will mark a milestone within ongoing work toward an EIC detector based on sPHENIX.

Collaboration

Growing collaboration - number of institutions is now > 70

Collaboration meeting June 5-6 had > 50 participants

On May 23-25 we had a very positive DOE OPA CD1/3A review!

Collaboration

We welcome new collaborators! There are many opportunities to contribute to the physics program and to detector R&D and construction.

